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Abstract—Clients (e.g., browsers) and servers require public
key certificates to establish secure connections. When a client
accesses a server, it needs to check the signature, expiration time,
and revocation status of the certificate to determine whether the
server is reliable. The existing solutions for checking certificate
status either have a long update cycle (e.g., CRL, CRLite) or
violate clients’ privacy (e.g., OCSP, CCSP), and these solutions
also have the problem of trust concentration. In this paper,
we present PROCESS, an online privacy-preserving on-chain
certificate status service based on the blockchain architecture,
which can ensure decentralized trust and provide privacy pro-
tection for clients. Specifically, we design Counting Garbled
Bloom Filter (CGBF) that supports efficient queries and Block-
Oriented Revocation List (BORL) to update CGBF timely in the
blockchain. With CGBF, we design a privacy-preserving protocol
to protect clients’ privacy when they check the certificate statuses
from the blockchain nodes. Finally, we conduct experiments and
compare PROCESS with another blockchain-based solution to
demonstrate that PROCESS is suitable in practice.

I. INTRODUCTION

Public Key Infrastructure (PKI) plays an important role
in today’s Internet, in which Certificate Authorities (CAs)
manage public key certificates for authentication and estab-
lishment of secure connections. For example, in the Hypertext
Transfer Protocol Secure (HTTPS), a browser authenticates
the accessed server by the server’s certificate, and establishes
a TLS (Transport Layer Security) [1] connection with that
server.

However, the status of a certificate authorized by a CA
may become invalid in various circumstances, even before the
expiration time set by the CA [2]. For example, the private
key of the server (which corresponds to the public key in the
server’s certificate) is compromised. In this case, CAs need to
revoke the invalid certificates and publish the revocations to
clients (e.g., browsers). Otherwise, clients may still consider
those certificates as valid, and attackers can perform man-
in-the-middle attacks accordingly, such as tampering with
information and forging identity [3].

The most common mechanisms for publishing revocations
are Certificate Revocation List (CRL) [2] and Online Certifi-
cate Status Protocol (OCSP) [4]. In CRL, CAs periodically
push a large list of revoked certificates to clients for checking
certificate statuses. However, due to the high update latency
and growing network overhead, CRL may be superseded by a
more efficient alternative, OCSP. In OCSP, a client can run an

on-demand query for a single certificate’s status to an OCSP
server, rather than downloading the entire list of the revoked
certificates. Unfortunately, there are two urgent problems in
existing OCSP mechanisms: trust concentration [5] and pri-
vacy leakage. Trust concentration concerns the compromise
of the centralized OCSP server, in which incorrect certificate
statuses may then be returned to clients, while privacy leakage
refers to the problem that an OCSP server can learn which
server (e.g., the website) the querying client is interested in
from its on-demand certificate status query.

Our goal is to solve above two problems in OCSP. The
blockchain technology, famous for having both distributed
storage and anonymity features, seems an ideal solution.
However, applying blockchain in this field is not trivial due
to the following challenges. First, the practical application is
heavily constrained because of the limited block size, when
confronting massive data storage. Existing solutions based on
the blockchain technology, such as CertLedger [6], ECBC [7]
and CertChain [8], encode all the revoked certificates into a
data structure (e.g., Merkle Hash Tree (MHT), MPT-Chain,
and Bloom filter), and store this structure in a block. Due to
the huge number of certificates (Let’s Encrypt [9] had issued
over 538 million certificates for 223 million domain names
by January 2019), even those highly compact data structures
still cannot be stored in a relatively small block and are
inefficient in practice. Therefore, we need to design a suitable
on-chain data structure when solving the trust concentration
problem through the blockchain architecture. Second, the
privacy leakage problem [10] is more subtle when we apply
the blockchain technology in OCSP. Due to the sensitivity of
certificates, solutions need to be designed in the form of an
alliance chain, which means that only OCSP servers act as
the blockchain nodes. Clients who check certificate statuses
do not participate in the blockchain, and thus the anonymity
feature of blockchain cannot protect clients’ privacy [8].
Some solutions (e.g., CertLedger [6]) employ OCSP Must
Staple mechanism [11, 12] to protect privacy. However, OCSP
Must Staple requires a custom extension for established and
standardized certificates, and thus it is not widely adopted [13].
Third, existing solutions for privacy protection (e.g., Private
Information Retrieval (PIR) [14]) has a high latency because
of their complex calculations [15]. Clients may be reluctant to
check the certificate status due to the poor efficiency and high



latency [16].
In this paper, we propose a PRivacy-preserving On-chain

CErtificate Status Service, called PROCESS. Specifically,
CAs upload the information of the revoked certificates to
blockchain nodes, which update global revocation statuses by
data structures designed for online revocation status query.
A client queries the blockchain nodes for the revocation
status through a privacy protection protocol, where the client
can set parameters to balance privacy protection and latency
requirements. The main contributions are as follows.
• Towards the limited block size challenge, we propose an

on-chain data structure called Block-Oriented Revocation
List (BORL), which is to accommodate Counting Gar-
bled Bloom Filter (CGBF) and update CGBF timely in
the blockchain architecture, where CGBF stores global
revocation statuses for efficient query and supports both
insertion and deletion.

• Regarding the privacy leakage and high latency chal-
lenges, we propose an efficient privacy-preserving on-
chain certificate status check protocol. Moreover, clients
can set parameters in the protocol to balance privacy
requirements and latency limitations.

• We conduct experiments and analyze the performance
of PROCESS. Compared with the existing work [8],
PROCESS has advantages in terms of space cost, privacy,
and latency.

This paper is organized as follows. In Section II, we
describe the models, design goals, and building blocks. Then,
we present CGBF and BORL in Section III and PROCESS
in Section IV. In Section V and Section VI, we analyze
the security and evaluate the performance of our proposal,
respectively. Finally, we review related work in Section VII
and conclude in Section VIII.

II. PRILIMINARIES

A. System Model

PROCESS consists of four entities: certificate authority
(CA), server, client, and blockchain node, as shown in Fig. 1.
• A CA is responsible for authorizing, updating, and re-

voking public key certificates for servers.
• A server (e.g., a website) publishes information or pro-

vides network services to clients.
• A client (e.g., a browser) checks the validity of the

certificates before it establishes secure connections (e.g.,
TLS connections) with servers.

• Blockchain nodes are designed to maintain a distributed
ledger storing the certificate statuses from CAs and reply
to the certificates’ status queries from clients.

B. Threat Model

From the practical perspective, we assume that the capabil-
ities of an adversary are as follows.
• The adversary can eavesdrop, tamper, and forge messages

between communicating entities in an untrusted network.

Establish secure 
connections

Upload revocation statuses Check certificate statuses

···

Blockchain Nodes • Update revocations
• Update BORL
• Maintain CGBF
• Respond to query

Authorize, update, 
revoke certificates

CAs Servers Clients

Fig. 1. Deployment of PROCESS

• The adversary can control a number of blockchain nodes,
but cannot control more than 51% computing power in
blockchain.

• The adversary cannot obtain the chameleon hash private
keys of the blockchain nodes, and cannot sign the revo-
cation information or calculate the random number of the
chameleon hash without the entity’s private key.

C. Design Goals

We aim to design a certificate status service that satisfies
the following goals.
• Timeliness. After a CA uploads the revoked information

to the blockchain nodes, the nodes can update the global
information in time.

• Privacy. The client does not disclose the information
of the server that it plans to access when querying the
certificate status.

• Compatibility. PROCESS can be compatible with cur-
rent PKI architecture without any custom extensions for
certificates.

D. Chameleon Hash

A chameleon hash function is a hash function that allows
one to find arbitrary collisions with a trapdoor [17, 18].
We employ the following chameleon hash scheme CH =
(Gen,ReHash,Hash,Check,Adapt).
• Gen(1λ). With the input of the security parameter λ, this

algorithm generates a group G of prime order p with
a generator g. Then, it chooses a random x ∈ Zp and
outputs the private key sk ← x and public key pk ← gx.

• ReHash(pk,msg, r). With the input of the public key
pk, a message msg, and a randomness r, this algorithm
outputs the hash h← gmsgpkr.

• Hash(pk,msg). With the input of the public key pk and
a message msg, this algorithm outputs a randomness r ∈
Zp and the hash h← ReHash(pk,msg, r).

• Check(pk,msg, r, h). With the input of the public key
pk, a message msg, a randomness r, and a hash h, this
algorithm outputs 1 if h = gmsgpkr and 0 otherwise.

• Adapt(sk,msg, r, h,msg′). With the input of the private
key sk, a message msg, a randomness r, a hash h,
and a new message msg′, this algorithm outputs a new
randomness r′ ← (msg + r · sk −msg′)/sk.
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Fig. 2. An illustration of BORL and CGBF where k = 3. First, we insert x1 = s0 ⊕ s3 ⊕ sm−1, x2 = s1 ⊕ si ⊕ sm−1 into CGBF and generate a
BORL node in a transaction addressed by 0xaa. Then, we delete x1 from CGBF in 0xbb, and insert x3 = s2 ⊕ si−1 ⊕ si into CGBF in 0xcc.

E. Digital Signature

Let DS = (Gen, Sign,Verify) be a digital signature scheme,
such as RSA. The key generation algorithm Gen(1λ) takes as
input a security parameter λ, and outputs a pair of public-
private keys (pk, sk). The signing algorithm Sign(sk,msg)
takes as input the private key sk and a message msg,
and outputs a signature sig. The verification algorithm
Verify(pk, (msg, sig)) takes as input the public key pk and
a message-signature pair (msg, sig), and outputs a bit where
0/1 indicates that the message-signature pair is invalid/valid.

III. REVOCATION STATUS STRUCTURE

We propose a data structure for storing and retrieving
certificate statuses in the blockchain architecture. Roughly
speaking, the revoked certificates are encoded into a structure,
called Counting Garbled Bloom Filter (CGBF). Then, CGBF
is decomposed into a number of structured pieces for block
storage, called Block-Oriented Revocation List (BORL). The
data structures of CGBF and BORL are shown in Fig. 2.

A. Counting Garbled Bloom Filter

Essentially, retrieving a certificate status is testing whether
a given certificate is in the set of revoked certificates. Garbled
Bloom Filter (GBF) is an efficient data structure for member-
ship testing, whose false positive is negligible compared to
traditional Bloom Filter [19]. Also, inserting new revocation
statuses into GBF does not change existing data. Therefore, it
looks that we can store the insertion into new blocks instead
of rewriting old ones, if we store GBF directly in blocks.
Unfortunately, GBF does not support deletion, which means
that revocation statuses cannot be deleted from GBF when they
are expired. The increasing number of revoked certificates will

quickly reach the upper bound of GBF and cause the time-
consuming reconstruction of GBF.

To support both insertion and deletion, we propose an
updatable data structure, called Counting Garbled Bloom
Filter (CGBF) as shown in Fig. 2. CGBF is an array and
each element consists of a string and a counter. The string
represents a share of a revocation status, and the counter
indicates the number of revoked certificates that use the
share. Formally, a CGBF instance CGBF is parameterized
by (m,n, λ, k,H). That means CGBF can encode at most
n revoked certificates in an m-length array, and every share
in the array is a λ-bit string. Every revoked certificate uses
k shares that are located by k independent uniform hash
functions H = {H0, . . . ,Hk−1}, where Hj : {0, 1}∗ →
{0, . . . ,m− 1} (0 ≤ j ≤ k − 1).

For convenience, the i-th (0 ≤ i ≤ m− 1) share/counter in
CGBF are denoted by CGBF [i].share/CGBF [i].counter,
respectively. For any revocation status rs ∈ {0, 1}λ stored in
CGBF , we have rs =

⊕k−1
j=0 CGBF [Hj(rs)].share.

B. Block-Oriented Revocation List

In general, the size of CGBF will eventually exceed the
capacity of a block. Therefore, we need to design a data
structure that stores CGBF as a number of small pieces and
supports efficient insertion and deletion. A trivial solution
is to divide a CGBF instance by elements. For example,
the first piece of CGBF contains the first two elements
(CGBF [0], CGBF [1]), the second piece contains the third
and fourth elements (CGBF [2], CGBF [3]), so on and so
forth. Unfortunately, this solution is inefficient since revocation
status insertion and deletion will cause the frequent modifica-
tion of all counters, namely rewriting of existing pieces.



To accommodate CGBF in the blockchain architecture, we
design a data structure called Block-Oriented Revocation List
(BORL) as shown in Fig. 2. BORL is a doubly linked list that
every node of the list contains the CGBF update (insertion
or deletion) over a period of time and can be stored in a
transaction on the blockchain. The doubly linked design is to
eliminate the forking of CGBF update. Since deletion needs
the certificates’ expiration time, to avoid traversing the BORL
and improve the efficiency, we also design the BORL state
which is possessed locally by every blockchain node.

Formally, a BORL instance BORL is parameterized by
(u, d, CH, (m,n, λ, k,H),H). The integers u and d are the up-
per bounds of updated revocation statuses contained in a trans-
action for insertion and deletion, respectively. The chameleon
hash scheme CH (Section II-D) is employed to modify the next
address stored in the transaction on the blockchain to imple-
ment the doubly linked design. The parameter (m,n, λ, k,H)
describes the CGBF instance stored in BORL. We also use a
cryptographic hash function H : {0, 1}∗ → {0, 1}λ to generate
the digest of the BORL state and CGBF instance.

A BORL node is a seven-tuple (type, update, addrp,
addrn, hs, hc, r). The boolean type determines whether the
update stored in the transaction is for insertion or dele-
tion. The CGBF update is stored in update. More specifi-
cally, if type is insertion, update consists of height and a
number of ((H0(rs), CGBF [H0(rs)].share), . . . , (Hk−1(rs),
CGBF [Hk−1(rs)].share)), daters). The integer height indi-
cates the last block in which the revocation status has been
inserted into CGBF and the revocation status of a revoked
certificate rs =

⊕k−1
j=0 CGBF [Hj(rs)].share is expired after

the timestamp daters. If type is deletion, update consists of
time and a number of ((H0(rs), . . . ,Hk−1(rs)), addrrs). It
indicates that certificates expired before timestamp time are
deleted from CGBF , and the expired revocation status rs is
stored in a transaction addressed by addrrs when inserting.
The integers addrp/addrn represent the previous/next BORL
nodes, respectively. The string hs and hc are the hash value of
the BORL state and CGBF before the update is performed,
respectively. The integer r is used by CH to modify addrn.

We define the BORL state of the instance BORL as
BORL.state= (addrins, addrdel, {datel, rsl, addrrsl}

γ−1
l=0 ).

The addresses addrins/addrdel indicate the transaction ad-
dresses of latest BORL nodes for insertion/deletion, respec-
tively. The array {datel, rsl, addrrsl}

γ−1
l=0 records the infor-

mation of all γ revoked certificates stored in CGBF , where
the revocation status rsl is expired after the timestamp datel
and addrrsl is the transaction address where rsl is inserted.

IV. PROCESS
A. Overview

We aim to design an online service for storing and retrieving
the revocation statuses of certificates issued in current PKI
systems. To solve the trust concentration problem and the
block size challenge, we adopt the blockchain architecture
along with the proposed BORL structure. Then, the revocation
statuses can be confirmed by and stored on a number of

Algorithm 1 Revocation
1: procedure REVOCATION(certs, C, skDSC )
2: revo← Revoke(certs)
3: sig ← DS.Sign(skDSC , (C, revo))
4: return ((C, revo), sig)

Algorithm 2 Package
1: procedure PACKAGE(pkDSC , C, revo, sig, CGBF )
2: if DS.Verify(pkDSC , ((C, revo), sig)) = 1 then
3: return TransGen((C, revo), sig)

blockchain nodes via traditional consensus. To solve the pri-
vacy leakage problem and the latency challenge, we design an
efficient privacy-preserving certificate status check protocol for
the CGBF structure. Our solution, named PROCESS, consists
of four phases: initialization, certificate revocation, BORL
update, and certificate status check.

B. Initialization

In PKI systems, CAs generate public-private key pairs for
authorizing, revoking, and verifying certificates, which are also
used in our solution to sign revocation information. For the
sake of completeness, those key pairs are generated in the
initialization phase. On the other hand, blockchain nodes need
to prepare essential materials for CGBF and BORL.

CA. A CA C generates a pair of public-private keys
(pkDSC , skDSC ) by DS.Gen(1λ), where λ is the security pa-
rameter. Then, the CA publishes the public key pkDSC and
keeps the private key skDSC secret.

Blockchain Node. A blockchain node N generates a pair
of public-private keys (pkCHN , skCHN ) by CH.Gen(1λ), where
λ is also the security parameter. Then, the node deploys
a smart contract Confirmation(pkCHN , ·, ·) on the blockchain,
which accepts two parameters (see Section IV-D), and keeps
the private key skCHN secret. Finally, the node initializes an
empty CGBF instance CGBF with the global parameters
(m,n, λ, k,H) and the BORL state of the instance BORL
parameterized by (u, d, CH, (m,n, λ, k,H),H). Both CGBF
and BORL.state are stored locally on the node.

C. Certificate Revocation

To revoke certificates, a CA generates revocation infor-
mation (Algorithm 1), and a blockchain node records the
information in the blockchain as a transaction (Algorithm 2).

CA. Let certs = {cert0, . . . , certγ−1} be the set of
certificates issued by a CA C that will be revoked, and
γ be the number of certificates in certs. To revoke those
certificates (Line 2), the CA extracts the expiration time (i.e.,
NotAfter) datecertl from the certificate certl(0 ≤ l < γ)
and generates revocation status rscertl ← H(certl), where
H : {0, 1}∗ → {0, 1}λ is the cryptographic hash function
defined in BORL. The revocation information is revo =
{(datecert0 , rscert0), . . . , (datecertγ−1

, rscertγ−1
)}.

Then, the CA signs the revocation information revo along
with its identity C with its private key skDSC to obtain a



signature sig (Line 3). Finally, the CA sends ((C, revo), sig)
to any blockchain node.

Blockchain Node. When a blockchain node receives
((C, revo), sig) from the CA C, it verifies that whether the
revocation information is valid (Line 2). Then, the node
packages ((C, revo), sig) into a transaction (Line 3) and
broadcasts the transaction in the blockchain network. Finally,
the blockchain node returns the address of the transaction to
CA for revocation transparency [20] once the transaction is
recorded on the blockchain.

D. BORL Update

Transactions of revocation information in the certificate
revocation phase are not directly used for certificate status
query, because they are inefficient and may leak clients’
privacy. Instead, all necessary information is maintained in
BORL in this phase, which includes three kinds of operations:
element insertion, element deletion, and update confirmation.

1) Element Insertion: To support certificate status query,
blockchain nodes collect revocation information from transac-
tions on the blockchain, and insert the revocation information
into the CGBF instance by generating a BORL node of
insertion type. This operation is shown in Algorithm 3.

According to transaction address addrins in BORL.state,
a blockchain node N obtains the height in the BORL node
at addrins, and height is the block height where last in-
sertion stops. The blockchain node traverses the transactions
on the blockchain bc from height-th block, and retrieves the
revocation information revo = {(datecert0 , rscert0), . . . } that
contains at most u revocation statuses. It also records the block
height height′ where the retrieval stops (Line 2).

Before proceeding, the blockchain node takes a snapshot of
current BORL state and CGBF instance by computing the hash
values of BOLR.state (Line 3)/CGBF (Line 4), respectively.
The following steps generate the CGBF update (Line 5-22),
and are performed on a temporary duplicate of BORL.state
and CGBF rather than modifying them (see the update
confirmation operation later in this section). More specifically,
each rscert in revo is mapped into k locations of CGBF
(Line 7-20). If some locations are never used, the blockchain
node keeps one location for generating a special share (Line
12-13 and 20) and fills others with random shares (Line 15). If
there is no unused location (i.e., empty = −1 in Line 19), the
element insertion fails and CGBF needs to be reconstructed.
Then, the CGBF update is update = (height′, list).

To complete the BORL node, the blockchain node obtains
the transaction address of previous BORL node, which is either
addrins or addrdel (Line 23), and computes the random value
of chameleon-hash function (Line 25). Finally, the blockchain
node packages (insertion, update, addrp, ⊥, hs, hc, r) into
a transaction (Line 26) and broadcasts the transaction in the
blockchain network.

2) Element Deletion: To reduce the frequency of CGBF
reconstruction, blockchain nodes delete the expired certificates
from the CGBF instance by generating a BORL node of
deletion type. This operation is shown in Algorithm 4.

Algorithm 3 Element Insertion
1: procedure INSERTION(bc, BORL.state, CGBF, pkCHN )
2: revo, height′ ← GetRS(bc, BORL.state, u)
3: hs ← H(BORL.state)
4: hc ← H(CGBF )
5: list← {}
6: for each item (datecert, rscert) in revo do
7: empty ← −1, share← 0λ, sset← {}
8: for j from 0 to k − 1 do
9: i← Hj(rscert)

10: if CGBF [i].counter = 0 then
11: if empty = −1 then
12: empty ← i
13: CGBF [i].share← 0λ

14: else
15: CGBF [i].share

$← {0, 1}λ

16: CGBF [i].counter ← CGBF [i].counter + 1
17: share← share⊕ CGBF [i].share
18: sset← sset ∪ {(i, CGBF [i].share)}
19: if empty 6= −1 then
20: CGBF [empty].share← share⊕ rscert
21: list← list ∪ {(sset, datecert)}
22: update← (height′, list)
23: addrp ← GetPrev(addrins, addrdel)
24: ins← (insertion, update, addrp,⊥, hs, hc)
25: r ← CH.Hash(pkCHN , ins)
26: return TransGen(ins, r)

According to transaction address addrdel in BORL.state, a
blockchain node N obtains the time that deletion operation has
been processed which is recorded as time in the BORL node
at addrdel. The blockchain node extracts an array array =
{(datel, rsl, addrrsl), . . . } that contains at most d revocation
statuses from BORL.state. It also records the expired time
time′ where the deletion stops (Line 2).

Before proceeding, the blockchain node takes a snapshot of
current BORL state and CGBF instance as in the element in-
sertion operation (Line 3-4). The following operations generate
the CGBF update (Line 5-13) that are also performed on a tem-
porary duplicate of BORL.state and CGBF . More specifi-
cally, for each item in array, the blockchain node computes k
locations and reduces the counter at each location (Line 8-11).
Then, the CGBF update is update = (time′, list).

To complete the BORL node, the blockchain node performs
similarly to the last four steps of the element insertion oper-
ation, where (deletion, update, addrp,⊥, hs, hc, r) is finally
packaged into a transaction and broadcasted in the blockchain
network (Line 14-17).

3) Update Confirmation: In element insertion and deletion,
all operations are performed on the temporary duplicate of
the BORL state and CGBF instance, since the update (i.e.,
insertion and deletion) packaged in the BORL node is not
confirmed in the blockchain network yet. Let the BORL node
containing unconfirmed update be node = (type, update,



Algorithm 4 Element Deletion
1: procedure DELETION(BORL.state, CGBF, pkCHN )
2: time′, array ←GetDS(BORL.state, d)
3: hs ← H(BORL.state)
4: hc ← H(CGBF )
5: list← {}
6: for each item (datel, rsl, addrrsl) in array do
7: iset← {}
8: for j from 0 to k − 1 do
9: i← Hj(rsl)

10: CGBF [i].counter ←CGBF [i].counter − 1
11: iset← iset ∪ {i}
12: list← list ∪ {(iset, addrrsl)})
13: update← (time′, list)
14: addrp ← GetPrev(addrins, addrdel)
15: del← (deletion, update, addrp,⊥, hs, hc)
16: r ← CH.Hash(pkCHN , del)
17: return TransGen(del, r)

addrp,⊥, hs, hc, r) at the transaction addressed by addrn, and
the BORL node at the transaction addressed by addrp be
node∗ = (type∗, update∗, addr∗p,⊥, h∗s, h∗c , r∗). To confirm
the update, addrn needs to be recorded in node∗. Then, all of
the blockchain nodes can apply the update in node to obtain
the latest BORL state and CGBF instant.

To record addrn in node∗ (see Algorithm 5), the blockchain
node N who generated node∗ first verifies whether node is
valid (Line 2). This process is similar to Algorithm 3 and 4
except for GetRS and GetDS. Instead of invoking GetRS and
GetDS, the blockchain node extracts revocation statuses from
the blockchain bc based on the height range (height, height′)
if type = insertion, where height is in the BORL node
at addrins and height′ is in node, and extracts array from
BORL.state based on (time, time′) if type = deletion,
where time is in the BORL node at addrdel and time′ is
in node. Then, the blockchain node replaces ⊥ in node∗ with
the transaction address addrn, and calculates new randomness
r′ (Line 3-6). As a result, the BORL node node∗ = (upd∗, r∗)
is changed to node′ = (upd′, r′), which is broadcasted in the
blockchain network.

For all of the blockchain nodes, they need to verify
node′ before applying the update. To this end, they perform
the smart contract Confirmation(pkCHN , ·, ·) with the param-
eters (node∗, node′) (Algorithm 6). First, it calculates the
chameleon hash h of node∗ before modification (Line 2),
and then verifies whether the modified r′ is correct (Line
3). If the smart contract execution result is 1, all of the
blockchain nodes replace node∗ with node′, and update
the state of BORL BORL.state and CGBF with node.
Specifically, they update shares and counters in CGBF
and (addrins, addrdel, {date, rs, addrrs}) according to node.
Otherwise they ignore node and the modification of node∗.

Algorithm 5 Node Modification
1: procedure MODIFICATION(bc, BORL.state, CGBF,
skCHN , node, addrn, node

∗)
2: if Verify(bc, BORL.state, CGBF, node) = 1 then
3: upd∗ ← (type∗, update∗, addr∗p,⊥, h∗s, h∗c)
4: upd′ ← (type∗, update∗, addr∗p, addrn, h

∗
s, h
∗
c)

5: h← CH.ReHash(pkCHN , upd∗, r∗)
6: r′ ← CH.Adapt(skCHN , upd∗, upd′, r∗, h)
7: return (upd′, r′)

Algorithm 6 Update Confirmation
1: procedure CONFIRMATION(pkCHN , node∗, node′)
2: h← CH.ReHash(pkCHN , upd∗, r∗)
3: return CH.Check(pkCH , upd

′, r′, h)

❷Verify sig and date

❼Restore element to get status

❶Return server's cert

❹Send query

❻Return response
Sending queries to blockchain nodes

❸Generate query

Clients Servers Blockchain nodes

❺Calculate a response

❹Send query

❻Return response
❺Calculate a response

Fig. 3. Certificate status check protocol

E. Certificate Status Check

Before a client establishes the secure connection with a
server, the client checks whether the certificate provided by
the server is valid, as shown in Fig. 3.

When a client accesses a server, the server provides the
client with its certificate cert (Step 1). The client verifies the
signature and expired time of cert (Step 2). If the signature is
valid and cert is not expired, the client invokes the revocation
status query protocol (Step 3-7).

In the revocation status query protocol, the client first
generates the query of cert (Step 3). According to the pri-
vacy and latency requirements, the client sets the length of
index range len when querying a share and the number of
blockchain nodes num when answering for each share, and
performs Algorithm 7. For each index i, the client chooses len
successive indexes that contain i (Line 7-8) and computes for
each blockchain node the shares it should retrieve (Line 9-13).
Specifically, the query is {(ij−posj), len, {padj,l}num−1l=0 }k−1j=0

and each ((ij − posj), len, padj,l) is sent to a random (better
not repetitive) blockchain node (Step 4).

When a blockchain node receives ((ij − posj), len, padj,l),
it computes resj,l =

⊕ij−posj+len−1
i=ij−posj ,padj,l[i]=1 CGBF [i].share

(Step 5) and sends resj,l back to the client (Step 6).



Algorithm 7 Query Generation
1: procedure QUERYGEN(m,λ, k,H,H, cert, len, num)
2: rscert ← H(cert)
3: query ← {}
4: for j = 0 to k − 1 do
5: i← Hj(rscert)
6: target← 0len, pad← 0len, strings← {}
7: pos

$← {0, . . . , len− 1}
8: target[pos]← 1
9: for l from 0 to num− 2 do

10: pad
$← {0, 1}len

11: strings← strings ∪ {pad}
12: target← target⊕ pad
13: strings← strings ∪ target
14: query ← query ∪ {((i− pos), len, strings)}
15: return query

After receiving the responses {resj,l}num−1l=0 for one in-
dex, the client can restore CGBF [Hj(rscert)].share =⊕num−1

l=0 resj,l. Then, the client combines the k shares by
rs′cert =

⊕k−1
j=0 CGBF [Hj(rscert)].share and compares it

with rscert obtained in Algorithm 7 (Step 7). If rs′cert is
equal to rscert, the certificate cert is revoked, otherwise the
certificate is valid.

V. SECURITY ANALYSIS

We show that PROCESS solves the problems in Section I
(i.e., trust concentration and privacy leakage) through the
following theorems. Especially, Theorem 1 claims that the
certificate status cannot be compromised and Theorem 2 states
that the blockchain node cannot learn the certificate queried
by the client.

Theorem 1: Under the threat model in section II-B, CAs and
blockchain nodes can ensure the integrity and authenticity of
revocation information and BORL, respectively.

Proof: (sketch) This theorem can be directly derived
through the distributed storage feature of the blockchain
technology. Note that the revocation information and BORL
nodes are packaged into transactions and verified by every
blockchain node before being confirmed on the blockchain.

From CAs’ perspective, the adversary may tamper or forge
the revocation information. However, revocation information
are signed by CAs’ private keys and all blockchain nodes
can verify the signatures stored on blockchain. Even if CAs’
private keys are leaked, they can discover the invalid revoca-
tion information through the transaction addresses returned by
blockchain nodes. Therefore, the integrity and authenticity of
revocation information is guaranteed.

From blockchain nodes’ perspective, the adversary may
update BORL incorrectly. However, all BORL nodes, includ-
ing insertion and deletion types, are verified in the update
confirmation operation. More specifically, a BORL node is first
verified by the blockchain node who generated the preceding
BORL node and then this verification is verified by all other

blockchain nodes. Therefore, the integrity and authenticity of
BORL is guaranteed.

Theorem 2: IfH are modeled as random oracles and there is
at least one honest blockchain node, then the probability of any
adversary that correctly determines the server accessed by the
client in the certificate status check protocol is not greater than
m/(N ·len), where m is the length of CGBF, N is the number
of total certificates, and len is the length of index range.
More specifically, let P be the probability of insertion failures
in CGBF and n be the upper bound of revoked certificates,
then the successful probability of any adversary is less than
n lnP/(−0.48 ·N · len).

Proof: (sketch) In Algorithm 7, each position mapped
from Hj is hidden in num strings of length len, where
num ≥ 2 is the number of blockchain nodes that response
for one position. Since there is at least one honest blockchain
node, even the collusion of num−1 blockchain nodes cannot
distinguish the position from the len bits.

To compute the number of certificates that can be mapped
to any of the len bits, we first calculate the probability that
a certificate is mapped into the string of length len, which is
p = 1 − (1 − len

m )k since H are modeled as random oracles.
Then, the expectation of the number of certificates mapped to
the string is Np. As a result, we have the successful probability
of any adversary 1/(Np) = 1/(N ·(1−(1− len

m )k)) ≤ 1/(N ·
len
m ) = m/(N · len) since k ≥ 1.

Given P and n in advance, we can determine m ≈
−n lnP/(ln 2)2 [21], where k = ln 2mn minimizes the pos-
sibility of insertion failures P ≈

(
1− e−kn/m

)k
in CGBF.

Therefore, we have the successful probability of any adversary
m/(N · len) = n lnP/(−(ln 2)2 ·N · len) < n lnP/(−0.48 ·
N · len).

According to Liu et al. [16], 8% of all valid certificates are
revoked, and the successful probability in Theorem 2 is then
−1.67 lnP/len. By adjusting len, the client can control the
privacy protection level.

VI. IMPLEMENTATION AND EVALUATION

In this section, we conduct experiments and compare PRO-
CESS with CertChain [8] to evaluate the performance of
our solution in terms of space cost, privacy protection, and
processing time (Section VI-B).

A. Implementation

Our prototype is mainly written in Javascript (node.js)
and Python (version 3.6.9). CAs are implemented through
OpenSSL and blockchain is based on Ethereum [22]. Clients
and CAs are deployed on Intel Core i5-7400U CPU
@3.0GHz, 8G RAM, and Ubuntu 18.04 64bit operating
system. Blockchain nodes are deployed on Intel Xeon E5-
2680 v4 CPU @2.4GHz, 32GB DDR, and Ubuntu 18.04
64bit operating system. Our dataset is from CRLite [23],
which provides some basic information (e.g., domains, issuer’s
name, fingerprint (160 bits) used to mark each certificate) of
10.7M valid certificates, and we use the fingerprints of these
certificates to conduct experiments.
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B. Result Analysis

For the parameters (m,n, λ, k,H) of CGBF, we fixed λ =
160, k = 3, and H = {hashlib.sha1(), hashlib.sha384(),
hashlib.sha512()}. We also set the possibility of insertion
failures P = (1 − e−kn/m)k = 0.0001. Then, we adjust the
revocation rate and the number of total certificates to determine
various n and corresponding m, where n is product of the
revocation rate and the number of total certificates.

1) Space cost: We conduct experiments to study the space
cost of revocation statuses in CertChain and PROCESS, where
the former consists of the revocation operations and CBF, and
the latter consists of the revocation information and CGBF.

First, we randomly select 1M certificates [8] and adjust the
revocation rate. To study the space cost in the blockchain, we
revoke 500 certificates once a time, where 500 is the upper
bound of the revocation operations in a block in CertChain.
In addition, we set the number of reconstructions of CGBF
with the product of the possibility of insertion failures and
the number of revoked certificates. As shown in Fig. 4,
CertChain consumes more space than PROCESS. On one
hand, the revocation operations in CertChain take up much
more space than the revocation information in PROCESS,
since PROCESS supports batch processing and only contains
necessary information for updating global statuses. On the
other hand, although a single CBF is much smaller than CGBF,
the entire CBF needs to be stored in every block while only
a few CGBFs are stored on the blockchain. More specifically,
the number of CGBFs stored on the blockchain is equal to the
number of reconstructions, which is rare in practice.

Second, we set the revocation rate as 8% [16] and adjust
the number of total certificates. As shown in Fig. 5, the space
cost increases as the number of total certificates increases,
but the cost of CertChain grows much faster than PROCESS.
Moreover, the space costs of CBF and CGBF take up most of
the space in CertChain and PROCESS, respectively.

In conclusion, the way that PROCESS updates global
revocation statuses is more practical than CertChain in the
blockchain architecture in terms of the space cost. In addition,
the possibility of false positives in CBF is 2λ times to the one
in CGBF, which means PROCESS has a higher accuracy in
checking the status of a certificate.

2) Privacy protection: Since CertChain does not protect
clients’ privacy, we only study the factors that influence the
privacy protection in PROCESS.
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First, we set the number of total certificates as 1M and
adjust the revocation rate and the length of index range len.
As shown in Fig. 6, the number of certificates mapped into the
range of a query decreases with the increase of the revocation
rate, which means the privacy protection level degrades as
the revocation rate grows. That is because the increase of the
revocation rate leads to the increase of m (i.e., the length of
CGBF), which means the probability len/m that certificates
are mapped into the index range decreases.

Second, we set the revocation rate as 8% and adjust the
number of total certificates and the length of index range
len. As shown in Fig. 7, the number of certificates mapped
into the range of a query remains stable when the number
of total certificates increases, which means that PROCESS
can accommodate many CAs without affecting the privacy
protection level.

Moreover, from Fig. 6 and 7, the number of certificates
mapped into the range of a query decreases with the decrease
of len. Therefore, the client should set a larger len if it needs
better privacy protection.

3) Processing time: We set the number of total certificates
as 1M to study the processing time in the on-chain part of
the certificate status check protocol, which includes generating
a query and calculating a response. The processing time of
restoring an element in the on-chain part is omitted since it
is almost the same as generating the query. In addition, we
evaluate the processing time of the complete certificate status
check protocol in PROCESS and CertChain.

First, we set the revocation rate as 8% and adjust the length
of index range len and the number of blockchain nodes num
to perform Algorithm 7 on the client side. As shown in Fig. 8,
the processing time of generating a query increases with the
increase of len and num, which corresponds to the time



TABLE I
PROCESSING TIME (MILLISECONDS) OF EACH STEP FOR CHECKING A

CERTIFICATE’S STATUS

Step 1 Step 2 Step 3
Signature Expiration On-chain Check Total

CertChain [8] 9.39 0.60 9.05 19.04
PROCESS 9.39 0.60 3.75 13.74

complexity of Algorithm 7 (i.e., O(len ·num)). The client can
appropriately reduce num to decrease the processing time.

Second, we adjust the revocation rate and the length of
index range len to study the time of calculating a response on
the blockchain side. As shown in Fig. 9, the processing time
only increases with the increase of len, since the response is
calculated from len shares in CGBF and is independent of the
number of total/revoked certificates. Therefore, the client can
choose appropriate len to balance the privacy protection and
response latency requirements.

Finally, we compare PROCESS with CertChain, as shown
in Table I. Similar to PROCESS, CertChain takes three steps to
check a certificate’s status: (1) verify the signature; (2) check
the expiration date; (3) run an on-chain check. The first two
steps are the same in both solutions. In step 3, PROCESS
consumes less time than CertChain because the latter needs to
perform more accesses to the blockchain, such as locating and
retrieving the revocation operation. In conclusion, PROCESS
is more efficient than CertChain in terms of the processing
time of certificate status check.

VII. RELATED WORK

According to whether the revocation information is released
in time, the revocation mechanism can be divided into two
categories: periodic push and online query.

A. Periodic Push Mechanism

In periodic push mechanism, the CA periodically pushes
revocation information to the client.

CRL [2] puts the serial number of the revoked certificate
in the list. The query efficiency of CRL is low, and it
occupies a lot of space as the number of revoked certificates
increases. Existing solutions are dedicated to reduce bandwidth
consumption. On one hand, they reduce the coverage of the
list. Google’s CRLSet [24] pre-selects a subset of all revoked
certificates, and Firefox’s OneCRL [25] pushes lists of revoked
intermediate certificates to browsers. On the other hand, they
design efficient storage structures. Rabieh et al. [26] adopted
Bloom filter, Larisch et al. [23] proposed filter cascade, and
Smith et al. [27] used bit vector. Although these solutions can
reduce the bandwidth consumption, it cannot fundamentally
solve the latency of update.

B. Online Query Mechanism

In online query mechanism, a client runs an on-demand
query for a single certificate’s status to a responder, which
returns the status to that client.

In OCSP [4], when a client attempts to access a server, it
sends a request for certificate status to a responder, which
provides a timestamp and signed revocation status of the
server for the client. However, the client will expose its access
behaviors to responders.

OCSP Staple [11] and OCSP Must Staple [12] were pro-
posed to alleviate the privacy concerns. It is the server (e.g., a
website) rather than the client to download an OCSP response
from a staple responder. However, it requires an X.509 exten-
sion to notify the client that the server will send an OCSP
response to the client. Moreover, they put too much pressures
on staple responders, which sign revocation information for
certificates every few seconds. Chariton et al. [28] proposed
CCSP, the responder packages multiple revocations into a re-
sponse, and compresses it with bitmap and other compression
algorithms. However, it still requires an X.509 extension, and
these solutions are based on centralized model.

To avoid single-point failure in centralized model, Chen
et al. proposed CertChain [8] and PBCert [29], which are
based on blockchain. CAs store the operations of certificates
and double counting Bloom filters on blockchain to check
certificates’ statuses. In CertChain [8], a client sends a certifi-
cate’s hash to a responder for checking the certificate’s status,
which will leak the client’s accessed behavior. In PBCert [29],
a client omits the first few bits of the certificate’s hash to obtain
multiple certificates’ statuses. PBCert has a high possibility of
false positives, which may misjudge an invalid certificate as
valid. Kubilay et al. [30] proposed CertLedger to store the
MHT composed of the certificate status at the head of each
block. However, the construction and verification of the MHT
cause high latency as certificates increase.

In summary, the existing solutions either have a long update
circle, or they cannot solve the problems of latency and privacy
concerns meanwhile.

VIII. CONCLUSION

To solve the problems of trust concentration and privacy
leakage in the OCSP mechanism, we propose a privacy-
preserving on-chain certificate status service, called PRO-
CESS. Our solution is based on dedicated data structures,
CGBF and BORL, and a certificate status check protocol,
which is flexible in terms of privacy protection and latency
requirements. The security analysis and experimental results
show that PROCESS provides efficient query services for
clients under the premise of privacy protection.

IX. ACKNOWLEDGMENTS

This research was supported in part by the National Natu-
ral Science Foundation ofChina under grants No. 61772383,
61702379, U1836202; bythe China Postdoctoral Science
Foundation under grant No. 2019T120685; by the Joint Fund
of Ministry of Education of China for Equipment Pre-research
under grant No. 6141A02033341; by the HUAWEI TECH-
NOLOGIES CO., LTD. The corresponding authors are Kun
He and Jing Chen.



REFERENCES

[1] E. Rescorla, “The transport layer security (TLS) protocol
version 1.3,” RFC Editor, Tech. Rep. 8446, 2018.

[2] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Hous-
ley, W. T. Polk et al., “Internet X.509 public key infras-
tructure certificate and certificate revocation list (CRL)
profile.” RFC Editor, Tech. Rep. 5280, 2008.

[3] S. Han, H. Kwon, C. Hahn, D. Koo, and J. Hur, “A survey
on MITM and its countermeasures in the TLS handshake
protocol,” in Proceedings of ICUFN, 2016.

[4] S. Santesson, M. Myers, R. Ankney, A. Malpani,
S. Galperin, and C. Adams, “X.509 internet public key
infrastructure online certificate status protocol - OCSP,”
RFC Editor, Tech. Rep. 6960, 2013.

[5] J. Chen, S. Yao, Q. Yuan, R. Du, and G. Xue, “Checks
and balances: A tripartite public key infrastructure for
secure web-based connections,” in Proceedings of IN-
FOCOM, 2017.

[6] M. T. Hammi, P. Bellot, and A. Serhrouchni, “BCTrust:
A decentralized authentication blockchain-based mecha-
nism,” in Proceedings of WCNC, 2018.

[7] Y. Xu, S. Zhao, L. Kong, Y. Zheng, S. Zhang, and
Q. Li, “ECBC: A high performance educational certifi-
cate blockchain with efficient query,” in Proceedings of
ICTAC, 2017.

[8] J. Chen, S. Yao, Q. Yuan, K. He, S. Ji, and R. Du,
“CertChain: Public and efficient certificate audit based
on blockchain for TLS connections,” in Proceedings of
INFOCOM, 2018.

[9] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley,
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